Journal of Organometallic Chemistry, 190 (1980) C5–C7 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary Communication

THE INSERTION OF THE DIOXIDES OF CARBON AND SULPHUR INTO THE PALLADIUM-CARBON BOND

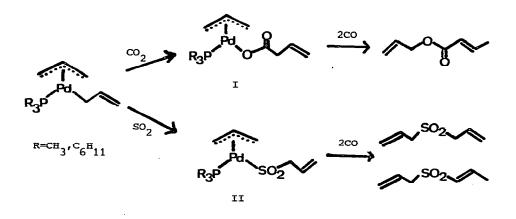
Trinh Hung, P.W. Jolly + and G. Wilke

Max-Planck-Institut für Kohlenforschung, Lembkestr. 5, D-4330 Mülheim a.d. Ruhr, W.-Germany

(Received February 11th, 1980)

Summary

Bis(η^1 , η^3 -allyl)palladium phosphine complexes react with carbon dioxide and sulphur dioxide by insertion into the palladiumcarbon σ -bond to give η^3 -allylpalladium-carboxylate and -S-sulphinate complexes.


Bis (η^3 -allyl)nickel complexes are known to react with carbon dioxide, in the presence of basic phosphines, to give η^3 -allyl-nickel carboxylates (1)

 $(\eta^{3}-2-CH_{3}C_{3}H_{4})_{2}Ni + CO_{2} \xrightarrow{P(CH_{3})_{3}} \eta^{3}-2-CH_{3}C_{3}H_{4}Ni(OCOC_{4}H_{7})P(CH_{3})_{3}$

Insertion has been suggested to be preceded by conversion of one η^3 -allyl group into the η^1 -form. Incorporation of CO₂ has also been observed in reactions with (η^3 -allyl)₂Ni (2) and η^3 -allyl-Pd(X)L complexes (3) without, however, isolation of the intermediates involved. Recently we have shown that the adducts formed

by bis(η^{3} -allyl)palladium complexes with basic phosphines contain both η^{1} - and η^{3} -allyl groups (4) and we report here their reactions with carbon dioxide and sulphur dioxide.

Carbon dioxide reacts readily at -30° to -20° with a toluene solution of the (η^1 , $\eta^3 - C_3H_5$)₂PdPR₃ (R = CH₃, C₆H₁₁) complexes to give η^3 -allylpalladium carboxylates (I) as pale yellow solids. The 2-methylallyl complexes react similarly. I absorbs two equivalents of CO at room temperature eliminating 2-propenyl-2-butenoate. Hydrogenation followed by protonolysis liberates butyric acid

Similar reactions are observed with sulphur dioxide at -30°: palladium-S-sulphinate complexes (II) are formed. The formulation of II as an S-sulphinate derivative, rather than the less common O-sulphinate form, is supported by the presence of the diagnostic absorptions in the infrared spectrum (KBr disc) at 1150 and 1025 cm⁻¹ (R=CH₃) which are attributed to the asymmetric and symmetric SO₂ stretching frequencies (5) . II also undergoes reductive elimination upon reaction with CO at room temperature to give a 1 : 1 mixture (R=CH₃) of diallylsulphone and allyl,2-propenylsulphone.

The structural assignment of I and II is supported by their 1 H- and 13 C-nmr spectra. The 13 C-nmr spectral data is summarized below.

Complex						
(R=C ₆ H ₁₁)	$\delta C_1 (J_{C,P}, J_{C,H})$	$\delta C_{2}(J_{C,P})$	$\delta C_{3}(J_{C,P})$	δC ₄ (J _{C,H})	δC ₅	δC ₆
I ^{a)}	44.82(1.1;158-2)	116.01 (4.3)	79.88(26.9)	44.9(126-5)	138.22	114.78
II	58.59(- ;159 ⁺ 2)	120.88(4.2)	72.33(26.2)	77.10(140-5)	b) 132.92	119.89

a) $\delta co 175.7 ppm$ b) J $C^{2.4 Hz}$

Characteristic are the large coupling constants for the allylic-carbon atoms <u>trans</u> to phosphorus (J_{P,C_3}) and the difference in $J_{C,H}$ for C_1 (sp²-hybridized) and C_4 (sp³-hybridized).

References.

- P.W. Jolly, S. Stobbe, G. Wilke, R. Goddard, C. Krüger, S.J. Sekutowski and Y.-H. Tsay, Angew. Chem. <u>90</u>, 144 (1978); S. Stobbe, Dissertation Ruhr-Universität Bochum (1979)
- 2 T. Tsuda, Y. Chijo and T. Saegusa, Synth. Commun. 9, 427 (1979)
- 3 R. Santi and M. Marchi, J. Organometal. Chem. 182, 117 (1979)
- 4 B. Henc, P.W. Jolly, R. Salz, S. Stobbe, G. Wilke, R. Benn,
 R. Mynott, K. Seevogel, R. Goddard and C. Krüger,
 J. Organometal. Chem. in press
- 5 See for example G. Vitzthum and E. Lindner, Angew. Chem. <u>83</u>, 315 (1971)